IONIS-DMPK$_{Rx}$ Clinical Program in Myotonic Dystrophy
Laurence Mignon, PhD
Director, Clinical Development

Partnered with Biogen
Development of a Treatment for Myotonic Dystrophy
How Ionis got involved in Myotonic Dystrophy

• Year 2008
• Within 1 week, Frank Bennett heard from:
 – Marigold Foundation
 – Association Française contre les myopathies (AFM)
 – Charles Thornton, University of Rochester
The Search for a Treatment for Myotonic Dystrophy
Why Ionis Became Interested in Myotonic Dystrophy

Myotonic Dystrophy Type 1 (DM1) – A toxic gain-of-function RNA

- Triplet Repeat Disease – expanded CUG repeats in the DMPK gene results in the formation of long “toxic” RNAs
- Disease severity and age of onset is correlated with number of repeats (higher # repeats = more severe disease)
- Broad spectrum of symptoms, including muscle dysfunction and GI tract issues
- Juvenile and adult forms of DM1

Why IONIS became interested in DM1

- Targeting toxic RNA, uniquely possible through ASO technology
- Potential to treat multiple aspects of the disease
- This is a rare autosomal dominant genetic disease with no treatment
- No approved treatment to stop or slow the progression of DM1
How Genetic Information Flows From in DNA \rightarrow Protein
The “Central Dogma” of Molecular Biology
Antisense Drugs Target RNA, Not Proteins

Gene (DNA) → mRNA → Antisense Oligonucleotide

Inhibition of RNA function

Disease-Causing Protein, e.g. huntingtin → ↓ DISEASE
IONSIS-DMPK-2.5_{Rx} is a Gen 2.5 Antisense Drug Designed to Reduce Toxic RNA Levels

- First muscle target
- IONSIS-DMPK-2.5_{Rx} targets toxic DMPK RNAs in multiple tissues
- RNase H1-mediated degradation of DMPK RNA releases sequestered proteins and restores normal cellular function

STAGE 1
IONSIS-DMPK-2.5_{Rx} targets toxic DMPK RNAs in multiple tissues

STAGE 2
RNase H1 Substrate
↑ affinity
↑ stability
↑ tolerability

RNase H1 Substrate
MOE
DNA
MOE
cET

STAGE 3
MBNL1 FREE to function in RNA splicing in the nucleus protein

Drug Discovery
Steps in the Process

Preclinical Clinical Research

Clinical Research

Post-marketing Research

Basic Research

Drug Discovery Research

Toxicology/PK Studies

Phase 1 Or Phase 1/2a

Phase 2

Phase 3

Commercial

Investigational New Drug Application (IND)

IONIS-DMPK$_{Rx}$ CS2 trial

Learnings from the trial

New Drug Application (NDA)
Phase 1/2a Trial tests the safety of the drug in DM1 patients

- **Multiple-Ascending Dose Study**
 - 8 centers in the US
 - 5 different dose levels are tested: 100mg, 200mg, 300mg, 400mg, 600mg
 - Short 6-week treatment duration
IONIS-DMPK_{Rx}-CS2: Phase 1/2a MAD Study in Adult Patients with Myotonic Dystrophy Type 1

Study Objectives

• Primary Objective
 – safety and tolerability

• Secondary Objectives
 - blood and urine pharmacokinetics
 – muscle tissue effects

• Exploratory Objectives
 – biomarkers and clinical outcomes
IONIS-DMPK\textsubscript{Rx}-CS2: Phase 1/2a MAD Study in Adult Patients with Myotonic Dystrophy Type 1

Main Inclusion/Exclusion Criteria

- **Inclusion Criteria**
 - Males or females; 20-55 years old
 - BMI < 35 kg.m\(^2\)
 - Genetic confirmation of DMPK CTG repeat length \(\geq 100\)
 - Onset of disease after age 12
 - Clinically apparent myotonia equivalent to hand opening time of at least 2 seconds
 - Ambulatory

- **Exclusion Criteria**
 - Implanted device for the treatment of cardiac problems (pacemaker, defibrillator)
 - Clinically abnormal ECG or echocardiogram (central cardiac reader)
• Original protocol included 4 cohorts; added the 5th cohort at 600 mg based on satisfactory safety profile

• 2 patients treated with placebo in each cohort
Learnings from the IONIS-DMPK\textsubscript{Rx}-CS2 Trial

Subject Baseline Demographics

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>100 mg</th>
<th>200 mg</th>
<th>300 mg</th>
<th>400 mg</th>
<th>600 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Age, Median (min, max)</td>
<td>38 (20, 48)</td>
<td>36 (26, 42)</td>
<td>33 (23, 47)</td>
<td>42 (33, 50)</td>
<td>39 (30, 46)</td>
<td>41 (25, 53)</td>
</tr>
<tr>
<td>Gender, Female, n (%)</td>
<td>5 (50%)</td>
<td>5 (83%)</td>
<td>3 (50%)</td>
<td>4 (67%)</td>
<td>8 (80%)</td>
<td>4 (40%)</td>
</tr>
<tr>
<td>Race, White, n (%)</td>
<td>8 (80%)</td>
<td>6 (100%)</td>
<td>6 (100%)</td>
<td>6 (100%)</td>
<td>10 (100%)</td>
<td>9 (90%)</td>
</tr>
<tr>
<td>Age at Sx onset Median (min, Max)</td>
<td>23 (12, 31)</td>
<td>22 (13, 33)</td>
<td>16 (13, 35)</td>
<td>23 (13, 45)</td>
<td>17 (12, 29)</td>
<td>30 (19, 44)</td>
</tr>
<tr>
<td>Age at Dx onset Median (min, Max)</td>
<td>31 (16, 40)</td>
<td>27 (24, 35)</td>
<td>28 (10, 43)</td>
<td>26 (23, 49)</td>
<td>28 (16, 37)</td>
<td>31 (19, 45)</td>
</tr>
<tr>
<td>CTG Repeats Median (min, Max)</td>
<td>432 (107, 1006)</td>
<td>271 (136, 546)</td>
<td>432 (256, 670)</td>
<td>616 (210, 1000)</td>
<td>645 (156, 1026)</td>
<td>368 (153, 763)</td>
</tr>
<tr>
<td>Isometric Handgrip Myotonia Relaxation Time in seconds, Median (Min, Max)</td>
<td>9.8 (1.4, 11.9)</td>
<td>7.6 (2.1, 11.3)</td>
<td>11.1 (2.3, 12.5)</td>
<td>5.4 (1.4, 7.6)</td>
<td>8.9 (2.8, 12.4)</td>
<td>1.3 (0.5, 10.4)</td>
</tr>
<tr>
<td>6 Minute Walk Test Median (Min, Max)</td>
<td>504 (285-661)</td>
<td>433 (357-545)</td>
<td>435 (260-645)</td>
<td>359 (223-640)</td>
<td>414 (283-508)</td>
<td>400 (250-637)</td>
</tr>
<tr>
<td>Myotonic Dystrophy Health Index, total score Median (Min, Max)</td>
<td>21 (5-52)</td>
<td>36 (34-41)</td>
<td>31 (30-47)</td>
<td>22 (5-48)</td>
<td>28 (20-47)</td>
<td>32 (17-44)</td>
</tr>
</tbody>
</table>
Learnings from the IONIS-DMPK$_{Rx}$-CS2 Trial

Heterogeneity of Patients

• Heterogeneity of patient population within and across dosing groups
 – Not unexpected, but exemplifying the mutli-systemic nature of the disease
 – Complicates interpretation of dose response relationship for clinical and molecular outcomes
 • Inclusion/exclusion criteria to focus on a more homogenous population
 • Need to use stratification for later stage trials
• Ongoing natural history studies aimed at helping better understand the heterogeneity and the progression of the disease throughout the spectrum of the disease
Learnings from the IONIS-DMPK$_{Rx}$-CS2 Trial
Outcomes Measures

- Myotonia tests:
 - Isometric handgrip myotonia relaxation time

1-2 day, in-person physical therapist training provided throughout the study:
- Study start
- Yearly thereafter

Lead trainer available for 1:1 sessions in person or by phone throughout the study

- 6-minute walk test
- 4 steps climb/descend

- Patient-reported outcomes
 - MDHI

- Trial generated solid and reproducible data
 - Emphasized ability to do a multi-center trial
 - Variabilities were seen between patients
 - Natural history and network studies have laid the groundwork with respect to clinical trial readiness
Learnings from the IONIS-DMPK_{Rx}-CS2 Trial
Reliability of Outcomes Measures Across Clinical Sites

Ankle Dorsiflexion as measured by QMT

Hand Grip as measured by QMT
Learnings from the IONIS-DMPK\textsubscript{Rx}-CS2 Trial

Biomarker Analysis

- Good quality of muscle biopsies across sites
- Good quality RNA extraction
- Initial biomarker analysis also showed variability—similar to outcomes measures
 - Changes were modest, with some trends
- More work required to better understand
 - How biomarkers are modulated
 - Impact of disease duration on biomarker changes
 - Impact of MBNL level on biomarker changes
Learnings from the IONIS-DMPK$_{Rx}$-CS2 Trial
Muscle Pharmacokinetics – The Most Important Finding

• Muscle pharmacokinetics
 – Originally we did not anticipate to do this
 • small tissue size
 • need to prioritize biomarker analysis
 – Improvements in analysis methods, especially in the ability to use very small pieces of tissue, allowed us to measure drug concentration
IONIS-DMPK$_{Rx}$ Did Not Reach Target Concentration of \sim10 ug/gm in the Muscle

Target tissue concentration was determined to be 10-15 ug/gm to get \sim50% KD in muscle.

Drug levels were based on estimated ED50 (25 mg/kg) and on muscle concentrations in mouse from GLP study.

Clinical data suggest that a 5 to 10-fold increase in drug concentration, or a 5 to 10-fold increase in potency, or combination of both may be required.
So What Now?

Antisense Oligonucleotides Designed to Human DMPK pre-mRNA
Example of a More Potent ASO Identified by Deeper Screening

Dose Dependent inhibition of human DMPK transgene in DMSXL Transgenic Mice

* TA Muscle *

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>IONIS-DMPK-2.5Rx</th>
<th>DMPK ASO A</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 m</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>50 m</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>100 m</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

* Quadriceps *

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>IONIS-DMPK-2.5Rx</th>
<th>DMPK ASO A</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 m</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>50 m</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>100 m</td>
<td>60</td>
<td>20</td>
</tr>
</tbody>
</table>
Working on Better Chemistries to Improve Activity of DMPK ASO

![5'-N-Palmitoylhexylamino]

<table>
<thead>
<tr>
<th>Isis #</th>
<th>Sequence (5' to 3')</th>
<th>Conjugate (X)</th>
<th>Heart ED$_{50}$ (mg/kg/wk)</th>
<th>Quad ED$_{50}$ (mg/kg/wk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>486178</td>
<td>ACAATAAAATACCGAGG</td>
<td>none</td>
<td>21</td>
<td>11.2</td>
</tr>
<tr>
<td>877864</td>
<td>XoACAATAAAATACCGAGG</td>
<td>5'-C16-hexyamino</td>
<td>5.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Heart

- Non-LICA ED$_{50}$ 21 mg/kg
- LICA-M ED$_{50}$ 5.3 mg/kg

Quadriceps

- Non-LICA ED$_{50}$ 11.2 mg/kg
- LICA-M ED$_{50}$ 4.8 mg/kg
Drug Discovery
Steps in the Process

Basic Research
Drug Discovery Research
Toxicology/PK Studies
Phase 1
Or Phase 1/2a
Phase 2
Phase 3
Commercial

Post-marketing Research

Preclinical Clinical Research

Investigational New Drug Application (IND)

Identification of drug with increased potency

IONIS-DMPK_{Rx}
CS2 trial

New Drug Application (NDA)
Conclusion

• Collaborative effort (sites, patient advocacy groups, patient community) has laid the foundation for future trials

• Due to the heterogeneity of patients with myotonic dystrophy it is important to have robust longitudinal data across the entire population for the measures used in a trial

• Our current research efforts focus on optimization of a drug with better potency

• Extracting all the data we can from the CS2 trial

• Ionis is committed to the development of a therapy for myotonic dystrophy
Acknowledgments

THANKS TO ALL THE PATIENTS AND THEIR FAMILIES TO ALL OF YOU FOR YOUR SUPPORT AND HARD WORK

<table>
<thead>
<tr>
<th>University of Rochester</th>
<th>University of Utah</th>
<th>Kansas University</th>
<th>Ohio State University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Moxley III</td>
<td>Nicolas Johnson</td>
<td>Richard Bahron</td>
<td>John Kissel</td>
</tr>
<tr>
<td>Charles Thornton</td>
<td>Russell Butterfield</td>
<td>Jeffrey Statland</td>
<td>Alan Sanderson</td>
</tr>
<tr>
<td>Chad Heatwole</td>
<td>Melissa Dixon</td>
<td>Mamatha Pasnoor</td>
<td>Stanley Iyadurai</td>
</tr>
<tr>
<td>Kate Eichinger</td>
<td>Susan Bonner</td>
<td>Gabrielle Rico</td>
<td>Julie Agriesti</td>
</tr>
<tr>
<td>Liz Leubbe</td>
<td>Caren Trujillo</td>
<td>Nicole Jenci</td>
<td>Filiz Muharrem</td>
</tr>
<tr>
<td>Jeanne Deckdebrun</td>
<td>Evan Pusillo</td>
<td>Laura Herbelin</td>
<td>Sharon Chelnick</td>
</tr>
<tr>
<td>Kathryn Eastwood</td>
<td>Deanna DiBella</td>
<td>Melissa Currence</td>
<td>Wendy Koesters</td>
</tr>
<tr>
<td>Lindsay Baker</td>
<td></td>
<td></td>
<td>Wendy King</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Matthew Yankie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stanford</th>
<th>Kennedy Krieger</th>
<th>University of Florida</th>
<th>Houston Methodist Neurological Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Day</td>
<td>Doris Leung</td>
<td>Tee Ashizawa</td>
<td>Erika Simpson</td>
</tr>
<tr>
<td>Sarada Sakamuri</td>
<td>Kathryn Wagner</td>
<td>S.H. Subramony</td>
<td>Luis Lay</td>
</tr>
<tr>
<td>Bona Purse</td>
<td>William Reid Thompson III</td>
<td>Guangbin Xia</td>
<td>Della Brown</td>
</tr>
<tr>
<td>Jennifer Perez</td>
<td>Genila Bibat</td>
<td>Phuong Deleyrolle</td>
<td>Wendy Brown</td>
</tr>
<tr>
<td>Tina Duong</td>
<td>Nikia Stinson</td>
<td>Desmond Zeng</td>
<td>Wendy Schell</td>
</tr>
<tr>
<td>Jason Hardage</td>
<td>Carly Stock</td>
<td>Aika Konn</td>
<td>Kayla Butler</td>
</tr>
<tr>
<td>Richard Gee</td>
<td></td>
<td>Donovan Lott</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alison Barnard</td>
<td></td>
</tr>
</tbody>
</table>

Partnered with:

[Logo of the Myotonic Dystrophy Foundation: Care and a Cure]

[Logo of Biogen]