

2017 MDF **Annual Conference**

Sept. 8–9, 2017 San Francisco

Care and a Cure

ORTHOTICS AND MOBILITY

Tina Duong, MPT, PhDc

Department MEDICINE of Medicine

Outline

- Leg Anatomy
 - Muscle Imbalances
- Biomechanics
 - Clinical symptoms
 - Muscle Imbalances: Ankle tightness/contractures
 - Gait/Walking
 - Stability or Balance
 - Energy Expenditure
- Treatment options for lower leg weakness
 - Exercise, Stretching, Orthosis
- Orthosis
 - Ground Reaction Forces
 - Choosing the right orthosis

Quick Fire: Mobility options

- Transfer Devices
- Upper Extremity Supports
- Power and Manual Mobility Devices

Lets get on the same page...

Leg Anatomy

Dorsiflexors:

Tibialis Anterior, Extensor hallucis Iongus, Extensor Digitorum Longus

Plantarflexos: Gastrocnemius and Soleus

2 Phases of Gait (walking)

Stance Phase: Rocker Phases

Objectives in Gait

Move from one place to another safely

Use the least amount of energy to move

- Forward motion
 - Rigid foot lever arm to propel body forward
 - Muscles to control movement
- Limit vertical motion
- Limit Pain/discomfort

Management of ankle foot muscle weakness

No intervention

Sackley et al 2009

- Physical therapy
 - Stretching:
 - Maintenance of range of motion (ROM)---tight Achilles tendon
 - Strengthening to improve active muscle movement
 - Balance

Orthotics

- Static
- Dynamic

Stretching and Orthotics in ROM

DMD Cohort

Solid AFO or stretching orthosis used daily significant effect on ankle range of motion

	RIGHT ANGLE DORSIFLEXION			
Characteristic	Ν	Mean ± SD	Median (range)	P-value*
		STRETCHING		
Have used	43	-6.0 ± 13.10	0 (-35 – 15)	0.008
Daily use	89	1.0 ± 10.7	0 (-45 – 20)	
		NIGHT SPLINTS		
Have used	33	-7.7 ± 15.0	-5 (-45 – 15)	0.006
Daily use	83	0.4 ± 9.7	0 (-30 – 15)	

*p-value from non-parametric comparison using Wilcoxon rank sum test (Duong, Unpublished 2016)

Physiology of Stretch

Slow Sustained pressure = most effective stretch

Strengthening: DM

24 week strength training program (RCT)

Lindeman et al 1995

- No effect on walking speed or stairs
- Reported improvements on ADLs
- No negative effects
- 12 Week aerobic training (Orngreen et al 2005)
 - Improvement oxygen uptake by 14%
 - Muscle fiber size increased

Benefits of Exercise

<u>Healthy Individuals</u>

Aerobic Endurance

- 30 minutes VO2max 50-85%
- Improved circulation, oxygen usage, oxidative phosphorylation (Timmons et al, 2010)
- 30min of moderate exercise, 5/week decreased mortality rates (Whitehead et al, 1995)
- Strength training
 - Increased muscle strength and power, increase lean body mass

Individuals with NMD

- Adaptations to exercise in NMD similar to sedentary population (Mcdonald et al, 2002, Fowler 2002)
- □ Goals:
 - Improve/maximize function
 - Fall prevention/balance
 - Weakness/sensory impairments
 - Minimize Pain
 - Improve sleep
 - Minimize development of contractures

Back to orthotics...

You may need a brace if...

- Steppage gait
- Dragging of the foot and toes
- Scraping of the toes across the ground
- Uncontrolled slapping of the toes against the ground
- Unable to walk normally in heel-to-toe fashion

- The inability to raise the foot at the ankle
- The inability to point the toes upward at the body (dorsiflexion)

Goal of Orthotics or Bracing

- Improve walking efficiency
 - Use less energy
- Foot clearance during walking
- Walking speed
- Maintain range of motion
- Improved stability

What type of orthosis works for me?

Considerations

ICF: Interaction of Concepts

Body Structure/Function (impairment)

Domain	Concerns	
Joint integrity and stability	Ligamentous instability, joint deformity	
Range of motion	Soft tissue contracture, joint deformity	
Muscle length	Fixed versus modifiable contracture	
Overall flexibility	Ability to don/doff; impact of orthosis on trunk, back	
Muscle performance	Strength, power, endurance	
Involuntary movement	Impact on tolerance of orthosis	
Coordination	Ability to don/doff	
Upper extremity function	Ability to don/doff	
Postural control, balance	Ability to don/doff	
Visual function	Ability to perform skin checks, donning/doffing	
Cognitive function	Understanding of how to use orthosis	
Cardiovascular endurance	Ability to functionally use orthosis	

Activity Level

Domain	Concerns
Gait analysis	Primary gait problems and compensations
	Impact of orthosis on physical work of walking
	Safe function with orthosis and assistive device
	Impact of resistance, unstable surface on gait
Activities of Daily Living	Don/doff orthosis
	Self care
	Orthosis management with clothes ie: shoes

Participation Level

Domain	Concerns
Home	Roles and participation in family tasks
School	Impact of classroom, walking through hallways, play areas
Work	Entering in buildings, workspace, common areas
Leisure	Hobbies
Transportation	Drive, public transportation

Takes a team

Orthotic Considerations

- What is the objective of the orthosis?
 - Support/stability
 - Control movement
 - Correct deformities
 - Minimize mal-alignment
 - Compensate for weakness
 - Improve gait, safety
 - Endurance (energy efficient gait)

- Comfort and Cosmesis
 - Short vs. long term
 - Low profile
 - Custom molded vs. off the shelf
- Cost (fabrication and maintenance)
 - Insurance or out of pocket

What do AFOs do?

Usually prescribed for

- Ankle dorsiflexion weakness through swing phase
- Ankle Plantar flexion weakness during stance phase

□ How?

- Supports forefoot from dropping into plantarflexion during swing
 - Energy efficient, Safety

Options

- Fixed
- Articulated/hinged
- Energy storing: Carbon fiber
- Neuroprosthetics
 - Functional Electrical Stimulation
 - Walkaide, Ness 300 foot drop system, Odstock
 - Stimulates peroneal nerve to initiate dorsiflexion
 - Initiated through EMG sensors, IMU sensors

Materials

- Leather, thermoplastic, carbon fiber
- Biomechanics
 - Ankle in neutral
 - In Plantarflexion
 - Extensor moment
 - In Dorsiflexion
 - Flexor moment
- Other types of orthoses
 - Shoe inserts
 - SuperMalleolar Orthosis (SMO)
 - Knee ankle foot orthosis (KAFO)
 - Hip Knee ankle foot orthosis (HKAFO)

Minimal AFOs

Foot ups

- Supports foot into dorsiflexion
- Low profile

Fixed short leg AFOs

- Flat foot
- Keeps foot at 90 degrees
- Not recommended for tall individuals 6'
- Keeps foot at 90 degrees so gait abnormal

Dorsiflexion Assist short leg AFOs

- Spring like hinge to help with dorsiflexion
- recommended for tall individuals 6' or 225 lbs.

Long AFOs

AFO with plantarflexion stop

- Allows normal dorsiflexion
- Has stop to not allow plantarflexion

Solid AFO (traditional)

- For dropfoot and knee weakness
- Keeps foot in fixed position
- Stability during stance phase

Anterior shelf

- Prevents knee collapse
- Need good hip extension strength

Carbon Fiber AFO

Energy return AFOs

- Carbon fiber
- Light
- Energy return at toe off (push off)
- Lack lateral stability support
- Normal Heel biomechanics

Not optimal for

- Achilles tendon contractures
- Decrease energy expenditure & Improve Gait speed
 - Danielson et al 2004
 - Danielsson et al 2010
 - Bartonek et al 2007
- NM Clinic Pilot study indicates patient satisfaction
 - Mnatsakanian et al 2017

Ground Reaction Force: How it affects your ankle and knees

Ground Reaction Force (GRF)

- Force exerted by the ground on the body
- Newton's 3rd law
 - F on ground exerts = and opposite reaction

Mid stance and toe off

- Plantarflexors active to counter dorsiflexion moment produced by ground reaction force
 - Weak plantarflexors = knee flexion=decrease stability
- Solid AFO: Translates GRF from the ground to front of tibial
 - Plantarflexion moment

Upper Extremity Supports, Mobility Devices, Transfer Devices

Thank you to Leslie Vogel, Claudia Senesac and Laura Case for contributions to the Equipment slides

Hand splints

- To stretch wrist/finger flexors
- To stretch finger extensors
- To prevent PIP hyperextension

Figure 8 oval splints

Functional Arm Supports

Mechanical- require some strength to elevate

□ WREX (rubber band tension)

http://jaecoorthopedic.com

□ X-Ar exoskeletal arm (springs and tensioning hardware)

Not currently on the market

Powered Arm Supports: Requires some strength

Neater Arm with Assist

<u>http://www.neater.co.uk/neater-arm-support</u>

□ Go Wing Arm Support

<u>http://www.innovationshealth.com/gowing</u>

Robotic Arms: No strength requirement

JACO Robotic Arm

http://www.kinovarobotics.com/about-us https://www.youtube.com/watch?v=IB-ZIuvrQqk#t=106

Early Mobility Devices

Go-Go[®] Elite Traveler Plus

Go-Go Scooter

- More portable than w/c
- Negatives
 - Poor seating support
 - Large turning radius
 - UE fatigue
- Mobility not Seating device

http://www.pridemobility.com/gogo/

Alternative motorized systems

EZ Lite Cruiser

http://www.ezlitecruiser.com/

Alternative motorized systems

Zappy

- more portable than w/c
- can stand or stand
- ~13 mph

http://www.zapworld.com/vehicles/zappy-pro-flex-500

Alternative motorized systems

EV Stand & Ride

- more portable than w/c
- can sit or stand
- ~15 mph

http://evrider.com

Portable power assist wheelchairs

http://www.alber-usa.com

E motion power assist or twion power assist

Smart Drive

Additional power adaptations

Firefly

- Attaches to manual wheelchair
- Difficult to transfer into chair with device
- ~12 mph

http://riomobility.com/

Power Wheelchair purchase

- Drive Mechanism
 - Front wheel
 - Mid-wheel
 - Rear wheel
- Power Options
 - Power standing feature
 - Power tilt and/or recline
 - Power seat elevation
 - Separately elevating power elevating leg rest

Supported Standing

Stand & Drive chairs

Permobil F5 stand & drive www.permobilus.com/f5vs.php

Other retailers

Redman standing powerchairs www.redmanpowerchair.com

Levo C3 Standing Chair levousa.com

Standing frames

EasyStand stander EasyStand.com

Hydraulic Patient Lifts

Drive Deluxe Silver Vein Patient Lift

Hoyer Hydraulic Patient Lifter

Drive Medical Power Patient Lift

Invacare Reliant 450 Battery

Easy Pivot

Standing Transfer Aids

Ceiling Lifts

Barrier Free

Surehands

Joerns Voyager Portable Track

Joerns Voyager Portable Track

Free Standing Tract Lifts

Norco-Inc.

Prism Medical

Transfer sheets

Alpha-Modalities

Arjo MaxiSlide

ErgoSlide Prismmedicalinc.com

Toilet Adaptations

Toilet Arm Rests

Aerolet toilet lift

Washlet / bidet

Bathroom Transfers

Tub Baths

www.inspiredbydrive.com

Bathroom Transfers

Tubbuddy with tilt

www.myshowerbuddy.com

diterry.

Bathroom Transfers- Rifton

Rifton Bath-Commode Chair

Rifton Blue Wave Tub Transfer Base- 2017

Rolling Shower/Commode

ActiveAid 285TR www.activeaid.com

RAZ-AT (Attendant Tilt) http://razdesigninc.com

Adapt Environment as Necessary

Enjoy LIFE...Don't struggle when you may not have to

QUESTIONS?

Tina Duong trduong@stanford.edu