MDF Conference: 9/12/2014

The Role of the Federal Government in Advancing DM Science & Care: The NIH

John D. Porter, Ph.D.

Program Director

National Institute of Neurological Disorders and Stroke

National Institutes of Health

Agenda

- NIH 101
- Basic Data on NIH Funding
 - Research funding for muscular dystrophies
 - Wellstone Centers
 - Translational awards
- Therapeutic Development Principles and the NIH
 - Things fail—how to improve on that
 - Role of basic science
 - Leveraging NIH programs
 - Partnering is essential
 - Importance of trial readiness
- Questions

NIH 101 (Basics)

- NIH: 27 institutes and centers (ICs) (1° DM ICs: NINDS & NIAMS)
- IC Program Directors are the interface point (filter & facilitate)
- Most NIH grants are investigator-initiated & reviewed by non-gov scientists with decisions based on peer review
- Our "pay line" is based on funds available (budget) & approach is to fund the most meritorious science (NINDS FY2014: 14th percentile)
- NIH institutes that are current funders of DM: NIAMS, NINDS, NIGMS, & NHLBI

NIH 101 (Processes)

National Institutes of Health Center for Scientific Review Assigns for Review **Study Section Evaluates for Scientific Merit** IC **Evaluates for Program Relevance IC National Advisory Council Recommends Action IC** Director

Takes final action for NIH Director

NIH Funding Data

Factors in \$\$s Awarded for any Disease:

- 1. Numbers of Applications We Receive (applicants; numbers increasing)
 - NIH Budget Appropriation (Congress; budget decreasing)
 - NIH success rates now < 20%

NIH Funding for Muscular Dystrophy

Fiscal Year

NIH Funding Since MDCC Action Plan*

RCDC Category	NIH Funding Since 2006 Launch of Action Plan (\$\$s)
Muscular Dystrophy (parent category)	\$538M
Congenital	New code in FY2014
Duchenne/Becker	\$233M
Facioscapulohumeral	\$36M
Myotonic Dystrophy	\$78M

*Data from NIH RePORTER, FY2006-13; bulk are investigatorinitiated awards (R01)

Paul D. Wellstone Muscular Dystrophy Cooperative Research Centers

- Program started 2003
- Six active Centers, 5 yrs funding each at ~\$1M direct costs/year
- Active Centers (focus)
 - Nationwide Children's (DMD) *
 - U. Iowa (CMD/LGMD) *
 - U. Massachusetts (FSHD)
 - U. Pennsylvania (DMD) *
 - U. Rochester (DM)
 - U. Washington (DMD/FSHD)

*Re-competing in 2014-15

Therapeutic Development Principles and the NIH

Bridging the 'Valley of Death'

Basic

Science

Clinical Application

Lost in Translation

Thing Fail!

- 6,000 rare diseases; ~200 have a therapy
- Combined, only ~5-6 approved therapies for neuromuscular diseases
- About 30-40 novel drugs approved by FDA/yr; phase 2 failure rate as high as 80%
- Credit model ("I cured DM") simply won't work—no one has all the needed resources
- Collaboration among all stakeholders is the only solution and even then...

First, It's About the Basic Biology

- For DM therapies, need to know the disease mechanisms—e.g., how CTG/CCTG repeat expansion leads to muscle wasting & weakness
- NIH R01 is at the crux of basic science advances ("gold standard" for investigators)
- Mechanisms yield targets for drug discovery
- No mechanism = no target = no therapy

Basic Biology: Understanding the CNS in DM

- CNS next research frontier for DM
- Program Projects (P01) support synergistic team science
- Ranum P01 (Florida/Stanford/Minnesota)
 - Ranum: molecular mechanisms—RAN translation in CNS
 - Swanson: molecular mechanisms—toxic RNA in the CNS
 - Day: clinical consequences—structural & functional changes in DM CNS
- Strong basic-clinical collaboration
- Essential mechanistic data for CNS therapy development

Next, Optimizing for Success

- Why/when do candidates fail? Safety &/or efficacy in phase 2 trials
- Solutions? Obvious, but hard: understand & try to control the variables
- What's not under control, but controllable?
 - Mechanistic knowledge
 - Strength of preclinical rationale
 - Natural history
 - Clinical sites

doi:10.1038/nature11556

A call for transparent reporting to optimize the predictive value of preclinical research

Story C. Landis¹, Susan G. Amara², Khusru Asadullah³, Chris P. Austin⁴, Robi Blumenstein⁵, Eileen W. Bradley⁶, Ronald G. Crystal⁷, Robert B. Darnell⁸, Robert J. Ferrante⁹, Howard Fillit¹⁰, Robert Finkelstein¹, Marc Fisher¹¹, Howard E. Gendelman¹², Robert Golub¹³, John L. Goudreau¹⁴, Robert A. Gross¹⁵, Amelie K. Gubitz¹, Sharon E. Hesterlee¹⁶, David W. Howells¹⁷, John Huguenard¹⁸, Katrina Kelner¹⁹, Walter Koroshetz¹, Dimitri Krainc²⁰, Stanley E. Lazic²¹, Michael S. Levine²², Malcolm Macleod²³, John M. McCall²⁴, Richard T. Moxley III²⁵, Kalyani Narasimhan²⁶, Linda J. Noble²⁷, Steve Perrin²⁸, John D. Porter¹, Oswald Steward²⁹, Ellis Unger³⁰, Ursula Utz¹ & Shai D. Silberberg¹

Grant applications & publications should report on core parameters of randomization, blinding, sample-size estimation, & handling of data.

Better reporting will raise awareness rigorous study design.

Tools: Leveraging NIH Programs for Therapeutics

- NINDS NeuroNEXT trial network (ph 2 trial support)
- NCATS
 - TRND
 - BrDGS
 - ORDR programs (RDCRN, R13, etc.)
- NINDS translational programs

NIH Translational Initiatives & DM

- PAR-06-043 & PAR-08-228: Translational R21 Program in MD & NMD
 - 16 awards: CMD (Girgenrath), DM (Armstrong, Melander, Miller, Reddy, Thornton), DMD (Burkin (2), Chao, Duan (2), Fallon, Froehner, Samulski), FSHD (Kyba), LGMD (Khurana), pan-MD (Lee)
- NINDS "Generic" Translational R21 program
 - 3 awards: DMD/BMD (Bertoni, Selsby); FSHD (Wagner); DM (Gottesfeld, pending)
- PAR-06-044 & PAR-08-229: Translational U01 Program in MD & NMD
 - 4 awards: DMD (Fallon, Guttridge, Lu, & Stedman)
- NINDS "Generic" Translational U Program
 - U54: DMD (Sweeney & Mendell); U44: DMD (McPhee); U24: DMD (Kornegay); U01: DM (Thornton)

Example from Duchenne MD

Negotiating the Valley of Death with an Innovative Public – Private Partnership

ACS American Cancer Society

MDA Muscular Dystrophy Association

National Institutes of Health NIH

PPMD Parent Project Muscular Dystrophy

IRS Qualifying Therapeutic Discovery Project grant

Avoid Roadblocks: Trial Readiness

- Find trial subjects (diagnostics & registries)
- Stratify trials/select trial endpoints (natural history)
- Ensure comparisons across multi-sites in trial are optimized (endpoint validity; standards of care)
- Detect meaningful changes during duration of trial (natural history & biomarkers, surrogate endpoints)
- Ensure lessons learned from all trials, even those failing to achieve primary outcome—sharing of data & best practices
- Therapeutic misconception (recognizing trial = experiment)

Public-Private Collaborations for Clinical Trial Readiness in DM

- Rochester Wellstone
 - Registry
 - Natural history
 - Validate clinical trial endpoints and biomarkers
 - DM-CRN
- Wellstone Partnering
 - NINDS
 - NHLBI
 - MDF
 - MDA
 - Marigold
 - Isis & Biogen Idec

Without the infrastructure,
DM trials will fail;
Participate when you can!

Facilitate!

- NIH plays a role in facilitating the understanding of DM and, based upon that understanding, the development of therapies
- But, therapies will not happen without the active collaboration of academics, advocacy, companies, governmental agencies, & patients and their families

Questions?

