Genomic Approaches Towards Better Understanding and Treating DM

ERIC T. WANG
LABORATORY
Taking the 10,000 foot view

- There are ~30,000 genes in the human genome
- Hundreds to thousands of molecular changes occur in DM
- Using high throughput and computational approaches, we can study many of these changes
An analogy

“Different” cars

Different RNA isoforms
We try to look at ALL the RNA isoforms in the cell
Deep sequencing and computational tools allow us to observe thousands of RNA splicing changes.

Millions of sequences that tell us the identity and quantity of RNA species:

- ATCAACGAGATAGGTTTCCCATACGTA
- CAGAGTTTAGAGATGAGATCGATAGAT
- CAGAGTTGAGAGCAGTAGGATATTAGA
- ATAGATGCGAGAGAGGGGGTTTATAAT
- CTGCTGAGAGTAGCTGCTGCTAGAGTT
- ACGAGACCGCGCTTTCGCTTTTTAAAGGG

Flow-cell → Tissues or cells → mRNA

Chloride channel 1, Cardiac troponin T, Insulin receptor, etc.

(myotonia) arrhythmia? insulin resistance?
We also study where RNA is located in the cell

Muscle cells

RNA can be carried to specific places in the cell before it is used to make protein, and **Muscleblind may participate in this process**.
We also study where RNA is located in the cell

RNA can be carried to specific places in the cell before it is used to make protein, and Muscleblind may participate in this process.
We also study where RNA is located in the cell.

DM muscle cells

![Image of DM muscle cells with Toxic RNA](Thurman Wheeler, Charles Thornton)

Nerve cell

![Image of Nerve cell](Park et al 2014 (Rob Singer))

RNA can be carried to specific places in the cell before it is used to make protein, and **Muscleblind may participate in this process**
We try to study how ALL RNAs move and localize in the cell…
...so that we can better connect molecular events with the symptoms experienced in DM.
The Team

Tanvi Saxena
Technical Assistant

Ona McConnell
Technical Assistant

Julia Oddo
Graduate Student

Danielle Adekunle
Graduate Student

Thomas Wentworth
Postdoctoral Fellow

Chloe Dlott
Undergraduate
Acknowledgments

Wang Lab
Tanvi Saxena
Ona McConnell
Julia Oddo
Danielle Adekunle
Thomas Wentworth

Burge Lab
Daniel Treacy
Chris Burge

Housman Lab
Thomas Wang
Sabine Schneider
David Housman

Lecuyér Lab
Neal Cody
Eric Lecuyér

Cooper Lab
Amanda Ward
Jimena Giudice
Tom Cooper

Berglund Lab
Amy Mahady
Stacey Wagner
Adam Struck
Andy Berglund

Thurman Wheeler
Charles Thornton

David Brook

John Day

Illumina
Shujun Luo
Gary Schroth
MIT Biomicro Center
Swanson Biotechnology Core

Valerion Therapeutics
Marina Biotech

GlaxoSmithKline
Biogen Idec

MDF Postdoctoral Fellowship
NIH Early Independence Award
Kathy and Curt Marble Cancer Research Fund
Ultimately, our goal is to better understand DM so that we can effectively treat it.

What are the downstream consequences of CTG repeat expansions?

- Can we destroy or prevent the RNA from being made?
- Can we prevent MBNL from sticking to the RNA?
- Can we remove or shorten the CTG repeats?

When we have molecules that can do these things, can we make sure they get to the right cells in the body?