Rigor, Reproducibility, & Defining Adequate Rationale for Trials

John D. Porter, Ph.D. Chief Science Officer Myotonic Dystrophy Foundation (john.porter@myotonic.org)

MDF Drug Development Roundtable 09.15.2016

Care and a Cure

Translational Success?

Overall success rates of Phase II clinical trials of NCEs fall from 28% to 18%

(Nat Rev Drug Discov 10, 328–29, 2011)

How to improve clinical trial success rates for DM?

Reproducibility is a Problem

- Bayer validated only 35% of published preclinical studies sampled (*Nat Rev Drug Discov* 10: 712, 2011)
- Amgen published similar data...
- Journal impact factor doesn't seem to translate into reliability
- After 30 candidates, backed by preclinical efficacy data, failed in trials, ALS TDI failed to replicate *any* of the prior mouse results for 70 different compounds
- Matter of design of the preclinical studies
- "failure...to demonstrate efficacy...leads us to conclude that the majority of published effects are most likely measurements of noise..." (*Amyotroph Lateral Scler* 2008; 9(1):4-15)

Rigor Impacts Effect Size

- Meta-analysis of 29 FK506 studies in stroke models
- "concerns that <u>estimates of effect size</u> might be too high because of factors such as <u>study quality</u> and <u>publication bias</u>"

PERSPECTIVE

Landis et al., Nature 490: 187-91, 2012

doi:10.1038/nature11556

A call for transparent reporting to optimize the predictive value of preclinical research

Story C. Landis¹, Susan G. Amara², Khusru Asadullah³, Chris P. Austin⁴, Robi Blumenstein⁵, Eileen W. Bradley⁶, Ronald G. Crystal⁷, Robert B. Darnell⁸, Robert J. Ferrante⁹, Howard Fillit¹⁰, Robert Finkelstein¹, Marc Fisher¹¹, Howard E. Gendelman¹², Robert Golub¹³, John L. Goudreau¹⁴, Robert A. Gross¹⁵, Amelie K. Gubitz¹, Sharon E. Hesterlee¹⁶, David W. Howells¹⁷, John Huguenard¹⁸, Katrina Kelner¹⁹, Walter Koroshetz¹, Dimitri Krainc²⁰, Stanley E. Lazic²¹, Michael S. Levine²², Malcolm Macleod²³, John M. McCall²⁴, Richard T. Moxley III²⁵, Kalyani Narasimhan²⁶, Linda J. Noble²⁷, Steve Perrin²⁸, John D. Porter¹, Oswald Steward²⁹, Ellis Unger³⁰, Ursula Utz¹ & Shai D. Silberberg¹

Grant applications & publications should report on core parameters of randomization, blinding, sample-size estimation, & data handling; better reporting of studies will lead to rigorous study design **NINDS' emphasis was on Reporting**

NINDS Rigor Guidelines

- Experimental Design
 - Rationale for the selected models & endpoints; adequacy of the controls; route & timing of delivery/dosing; powering; stats methodology
- Minimizing Bias
 - Methods of blinding; randomization and/or stratification; reporting of missing data; reporting all results
- Results
 - Independent validation/replication; dose-response; robustness & reproducibility; validation of target engagement/modulation
- Interpretation of Results
 - Alternative interpretations; validation from other literature; size of effect re expected clinical impact; potential COIs

New NIH Rigor Requirements

As of 1/25/2016—all NIH applications must address:

- 1. the scientific premise forming the basis of the proposed research;
- 2. rigorous experimental design for robust and unbiased results;
- 3. consideration of relevant biological variables; and
- 4. authentication of key biological and/or chemical resources.

A 3-Stage Model for Preclinical Efficacy Studies

- 1. Pilot Study (discovery focus)
 - Initial testing of cmpd/biologic
 - But, recognize these studies can carry unintentional biases
- 2. Exploratory Preclinical Study (mechanism/target focus)*
 - Efficacy via <u>multiple outcomes</u>
- 3. Preclinical Trial (cmpd/biologic focus)*
 - Efficacy via <u>predetermined primary outcome</u>, multiple models/large models when possible
 - Gold standard

* randomized, blinded, clinically relevant design

*Credit: Howard Fillit ADDF

Desperately Seeking Scientific Premise

Challenge: Boost clinical trial success rate

Means to an End: Unbiased examination of *all* aspects of the rationale / scientific premise behind each clinical trial (basic biology to supporting clinical data)

does

animal models

safety/efficacy trials

Seeking Scientific Premise: Starting with the Basic Science

Basic **Basic**/ Mechanistic Research

Target ID?

Is there a basic understanding of the biology of the involved gene, RNA, &/or protein? Do we truly understand the disease mechanism? Or is a non-disease-mitigating/ancillary event being addressed?

Seeking Scientific Premise: Non-Clinical Triaging

FDA IND Preclinical Development

Optimization? Efficacy; is preclinical POC established? Rigor? Appropriateness of endpoints? Delivery route appropriate? Bioavailability, exposure, PD/PK? Non-clinical program—tox liabilities? Kill early attitude!

Seeking Scientific Premise: Clinical Premise Validation

FDA NDA or BLA

Clinical Studies & Trials

Natural history sufficient—modifiable endpoints in place & variability understood? Risk/benefit assessments? Biomarkers? Early PK/PD assessments? POC at early stage? Prior experience with drug / pathway in pts? Kill early attitude!

Optimizing the pipeline: academic—advocacy— Federal funder—drug developer partnering...

Path to Informed Trials

Goal: collectively obtain adequate scientific rationale to launch clinical trials & improve on generally poor success rates of those trials

Adequate = conducted using best practices to be sufficiently rigorous and well informed
Improving how we make <u>unbiased</u> decisions via robust preclinical & clinical evaluation systems