

2018 MDF ANNUAL CONFERENCE September 14-15, 2018 Nashville, TN

DM 101: GETTING A HANDLE ON THE BASICS

Overview

- Myotonic Dystrophy genetics
- Myotonic Dystrophy type 1 diagnosis
- Myotonic dystrophy type 1 symptoms
- Myotonic dystrophy type 2 diagnosis
- Myotonic dystrophy type 2 symptoms

Myotonic dystrophy (Dystrophia myotonica

- □ Two disorders: type 1 and type 2
- Both disorders are caused by repeat expansion
- Repeat expansion impairs RNA splicing
- Different symptoms/overlapping symptoms

Why is DM described as "the most variable human disease?"

- Most genetic disorders are due to a single missing protein or too much of a single protein (all or none)
- DM genetics are influenced by:
 - Repeat length
 - Somatic mosaicism/repeat instability

What gene mutation causes DM1?

- DMPK (dystrophica myotonia protein kinase) gene
- Non-coding Trinucleotide repeat...CTG CTG CTG CTG CTG...

Myotonic Dystrophy Type 1

Sub definitions of DM1

- Congenital onset (symptoms start at birth)
- Childhood onset (symptoms before age 10)
- Adult onset (symptoms after 10)
- Mild/late onset/oligosymptomatic

What gene mutation cause DM2?

- Zinc finger 9 (ZNF9) gene = cellular retroviral nucleic acid binding protein 1 (CNBP)
- Non-coding Tetranucleotide repeat
- □ ...CCTG CCTG CCTG ...

Myotonic Dystrophy type 2

Range where expansion Or contraction is possible

75-11,000 repeats

Myotonic dystrophy type 2

Where did DM come from?

- □ DM1
 - Out of Africa migration
- □ DM2
 - □ 1,000- 2,000 BC

Wikipedia, early human migrations

How is it inherited?

Dominant inheritance

- 50% chance of inheriting abnormal gene
- 50% chance at <u>each</u>pregnancy
- Does not alternate or "even out"

What is anticipation?

What is somatic mosaicism?

- Repeat size can vary between:
 - Cells
 - Tissues
 - Organs

Review: DNA, RNA, and protein

RNA splicing is disrupted in DM

Splicopathy

Treatment Targets

Multi-systemic Disease

DM 1 DM2

common	Facial weakness	rare
common	Difficulty swallowing, speaking	rare
common	Difficulty breathing	rare
common	Heart problems	variable
rare	Pain	common
common	Difficulty thinking, memory	uncommon
yes	Congenital form	No

How does it affect the muscles?

- □ DM1− distal muscles
 - Hands, ankles, but also neck

- □ DM2- proximal muscles
 - Hips and shoulders

MUSCIE

 Myotonia ("muscle stiffness") – delayed muscle relaxation

MUSCIE

Myotonia ("muscle stiffness") – delayed muscle relaxation

 Dystrophy – progressive weakness and loss of musde mass

Air to lungs

trachea by

Food to stomach

Swallowing – difficultyswallowing with riskof aspiration and slurred

DM 1

DM2

How does it affect the eyes?

- Cataracts
 - "Christmas tree"
 - □ tinsel effect

How does it affect the brain?

- Congenital DM1
 - Increased incidence of:
 - intellectual disability
 - Attention deficit disorder
 - Autism
- Adult onset DM1
 - Frontal and executive tasks

How does it affect the heart?

- Heart rhythm (arrhythmia)
 - Conduction block
 - Atrial flutter or fibrillation
 - Risk of sudden cardiac death

- Cardiomyopathy
 - Decreased strength of heart muscle

How does it affect the gastrointestinal tract?

- Swallowing difficulties (dysphagia)
 - Can lead to choking, aspiration

- Constipation
- Pseudo-obstruction
- Diarrhea
- Irritable bowel syndrome (IBS)- like symptoms

How does it affect the lungs?

- The muscles of breathing
 - Diaphragm
 - Intercostal muscles (muscles between the ribs)
- Brain control of breathing in sleep
 - Sleep apnea
- Aspiration pneumonia

How does it affect the hormones?

- □ irregular or absent menstrual periods
- Testicular atrophy
- Growth hormone
- Parathyroid hormone imbalance
- Thyroid hormone imbalance

How does it affect sleep?

- Increased sleep requirement (hypersomnolence)
- Daytime sleepiness
- Sleep apnea and snoring
 - Obstructive
 - weak tongue and throat muscles collapse during sleep
 - Central
 - brain directing breathing rhythm
- □ fatique

Others

□ **Pain**: DM2 > DM1

□ Cancer: Increased risk of cancer → up to date with cancer screening

What are the anesthesia effects of DM?

- Different types of anesthesia have different risks:
 - Weaken breathing, coughing, swallowing
 - Confusion/delerium
 - Constipation
 - Cause all-over myotonia
- See myotonic.org website for anesthesia reccommendations

What can you do?

- Learn about it and inform your family
- Establish an interdisciplinary medical care team
- Preventative care (cancer screening, diabetes)
- Support groups support each other
- Consider research see what is right for you www.clinicaltrials.gov
 - Registries
 - Surveys
 - Observational studies
 - Treatment studies